Follicular lymphoma (FL) is a group of malignancies of lymphocyte origin that arise from lymph nodes, spleen, and bone marrow in the lymphatic system. It is the second most common non-Hodgkins lymphoma. Characteristic of FL is the presence of follicle center B cells consisting of centrocytes and centroblasts. Typically, FL images are graded by an expert manually counting the centroblasts in an image. This is time consuming. In this paper, we present a novel multi-scale directional filtering scheme and utilize it to classify FL images into different grades. Instead of counting the centroblasts individually, we classify the texture formed by centroblasts. We apply our multi-scale directional filtering scheme in two scales and along eight orientations, and use the mean and the standard deviation of each filter output as feature parameters. For classification, we use support vector machines with the radial basis function kernel. We map the features into two dimensions using linear discriminant analysis prior to classification. Experimental results are presented.